Characterizing complex networks with Forman-Ricci curvature and associated geometric flows
نویسندگان
چکیده
منابع مشابه
Characterizing complex networks with Forman-Ricci curvature and associated geometric flows
We introduce Forman-Ricci curvature and its corresponding flow as characteristics for complex networks attempting to extend the common approach of node-based network analysis by edge-based characteristics. Following a theoretical introduction and mathematical motivation, we apply the proposed network-analytic methods to static and dynamic complex networks and compare the results with establishe...
متن کاملForman curvature for complex networks
We adapt Forman’s discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, w...
متن کاملRicci flows with unbounded curvature
We show that any noncompact Riemann surface admits a complete Ricci flow g(t), t ∈ [0,∞), which has unbounded curvature for all t ∈ [0,∞).
متن کاملForman curvature for directed networks
A goal in network science is the geometrical characterization of complex networks. In this direction, we have recently introduced the Forman’s discretization of Ricci curvature to the realm of undirected networks. Investigation of this edge-centric network measure, Forman curvature, in diverse model and real-world undirected networks revealed that the curvature measure captures several aspects ...
متن کاملricci flows with bursts of unbounded curvature
Given a completely arbitrary surface, whether or not it has bounded curvature, or even whether or not it is complete, there exists an instantaneously complete Ricci flow evolution of that surface that exists for a specific amount of time [GT11]. In the case that the underlying Riemann surface supports a hyperbolic metric, this Ricci flow always exists for all time and converges (after scaling b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complex Networks
سال: 2017
ISSN: 2051-1310,2051-1329
DOI: 10.1093/comnet/cnw030